Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 43(11): 2727-2742, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32876347

RESUMO

Heat stress (HS), causing impairment in several physiological processes, is one of the most damaging environmental cues for plants. To counteract the harmful effects of high temperatures, plants activate complex signalling networks, indicated as HS response (HSR). Expression of heat shock proteins (HSPs) and adjustment of redox homeostasis are crucial events of HSR, required for thermotolerance. By pharmacological approaches, the involvement of cAMP in triggering plant HSR has been recently proposed. In this study, to investigate the role of cAMP in HSR signalling, tobacco BY-2 cells overexpressing the 'cAMP-sponge', a genetic tool that reduces intracellular cAMP levels, have been used. in vivo cAMP dampening increased HS susceptibility in a HSPs-independent way. The failure in cAMP elevation during HS caused a high accumulation of reactive oxygen species, due to increased levels of respiratory burst oxidase homolog D, decreased activities of catalase and ascorbate peroxidase, as well as down-accumulation of proteins involved in the control of redox homeostasis. In addition, cAMP deficiency impaired proteasome activity and prevented the accumulation of many proteins of ubiquitin-proteasome system (UPS). By a large-scale proteomic approach together with in silico analyses, these UPS proteins were identified in a specific cAMP-dependent network of HSR.


Assuntos
AMP Cíclico/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteostase/fisiologia , AMP Cíclico/metabolismo , Resposta ao Choque Térmico , Oxirredução , Peptídeo Hidrolases/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , /fisiologia , Ubiquitina/metabolismo
2.
Antioxidants (Basel) ; 8(11)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671820

RESUMO

Vitamin C (l-ascorbic acid) is an excellent free radical scavenger, not only for its capability to donate reducing equivalents but also for the relative stability of the derived monodehydroascorbate radical. However, vitamin C is not only an antioxidant, since it is also a cofactor for numerous enzymes involved in plant and human metabolism. In humans, vitamin C takes part in various physiological processes, such as iron absorption, collagen synthesis, immune stimulation, and epigenetic regulation. Due to the functional loss of the gene coding for l-gulonolactone oxidase, humans cannot synthesize vitamin C; thus, they principally utilize plant-based foods for their needs. For this reason, increasing the vitamin C content of crops could have helpful effects on human health. To achieve this objective, exhaustive knowledge of the metabolism and functions of vitamin C in plants is needed. In this review, the multiple roles of vitamin C in plant physiology as well as the regulation of its content, through biosynthetic or recycling pathways, are analyzed. Finally, attention is paid to the strategies that have been used to increase the content of vitamin C in crops, emphasizing not only the improvement of nutritional value of the crops but also the acquisition of plant stress resistance.

3.
Ecotoxicol Environ Saf ; 163: 536-543, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30077150

RESUMO

An increasing input rate of rare earth elements in the environment is expected because of the intense extraction of such elements form their ores to face human technological needs. In this study Lemna minor L. plants were grown under laboratory conditions and treated with increasing concentrations of cerium (Ce) ions to investigate the effects on plant growth and antioxidant systems. The growth increased in plants treated with lower Ce concentrations and reduced in plants treated with higher concentrations, compared to control plants. In plants treated with higher Ce concentrations lower levels of chlorophyll and carotenoid and the appearance of chlorotic symptoms were also detected. Increased levels of hydrogen peroxide, antioxidant metabolites and antioxidant activity confirmed that higher Ce concentrations are toxic to L. minor. Ce concentration in plant tissues was also determined and detectable levels were found only in plants grown on Ce-supplemented media. The use of duckweed plants as a tool for biomonitoring of Ce in freshwater is discussed.


Assuntos
Araceae/efeitos dos fármacos , Cério/toxicidade , Antioxidantes/metabolismo , Araceae/crescimento & desenvolvimento , Araceae/metabolismo , Cério/metabolismo , Clorofila/metabolismo , Monitoramento Ambiental/métodos , Água Doce/química , Peróxido de Hidrogênio/metabolismo
4.
Front Plant Sci ; 7: 1803, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27990148

RESUMO

Plants can frequently experience low oxygen concentrations due to environmental factors such as flooding or waterlogging. It has been reported that both anoxia and the transition from anoxia to re-oxygenation determine a strong imbalance in the cellular redox state involving the production of reactive oxygen species (ROS) and nitric oxide (NO). Plant cell cultures can be a suitable system to study the response to oxygen deprivation stress since a close control of physicochemical parameters is available when using bioreactors. For this purpose, Arabidopsis cell suspension cultures grown in a stirred bioreactor were subjected to a severe anoxic stress and analyzed during anoxia and re-oxygenation for alteration in ROS and NO as well as in antioxidant enzymes and metabolites. The results obtained by confocal microscopy showed the dramatic increase of ROS, H2O2, and NO during the anoxic shock. All the ascorbate-glutathione related parameters were altered during anoxia but restored during re-oxygenation. Anoxia also induced a slight but significant increase of α-tocopherol levels measured at the end of the treatment. Overall, the evaluation of cell defenses during anoxia and re-oxygenation in Arabidopsis cell cultures revealed that the immediate response involving the overproduction of reactive species activated the antioxidant machinery including ascorbate-glutathione system, α-tocopherol and the ROS-scavenging enzymes ascorbate peroxidase, catalase, and peroxidase making cells able to counteract the stress toward cell survival.

5.
Front Plant Sci ; 7: 971, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27468287

RESUMO

Grain protein content (GPC), is one of the most important trait in wheat and its characterized by a very complex genetic control. The identification of wheat varieties with high GPC (HGPC), as well as the characterization of central enzymes involved in these processes, are important for more sustainable agricultural practices. In this study, we focused on Glutamine synthetase (GS) as a candidate to study GPC in wheat. We analyzed GS expression and its enzymatic activity in different tissues and phenological stages in 10 durum wheat genotypes with different GPC. Although each genotype performed quite differently from the others, both because their genetic variability and their adaptability to specific environmental conditions, the highest GS activity and expression were found in genotypes with HGPC and vice versa the lowest ones in genotypes with low GPC (LGPC). Moreover, in genotypes contrasting in GPC bred at different nitrogen regimes (0, 60, 140 N Unit/ha) GS behaved differently in diverse organs. Nitrogen supplement increased GS expression and activity in roots of all genotypes, highlighting the key role of this enzyme in nitrogen assimilation and ammonium detoxification in roots. Otherwise, nitrogen treatments decreased GS expression and activity in the leaves of HGPC genotypes and did not affect GS in the leaves of LGPC genotypes. Finally, no changes in GS and soluble protein content occurred at the filling stage in the caryopses of all analyzed genotypes.

6.
Plant Mol Biol ; 90(4-5): 467-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26786166

RESUMO

Cyclic adenosine 3',5'-monophosphate (cAMP) is a recognized second messenger; however, knowledge of cAMP involvement in plant physiological processes originates primarily from pharmacological studies. To obtain direct evidence for cAMP function in plants, tobacco Bright Yellow-2 (BY-2) cells were transformed with the cAMP sponge, which is a genetically encoded tool that reduces cAMP availability. BY-2 cells expressing the cAMP sponge (cAS cells), showed low levels of free cAMP and exhibited growth inhibition that was not proportional to the cAMP sponge transcript level. Growth inhibition in cAS cells was closely related to the precocious inhibition of mitosis due to a delay in cell cycle progression. The cAMP deficiency also enhanced antioxidant systems. Remarkable changes occurred in the cAS proteomic profile compared with that of wild-type (WT) cells. Proteins involved in translation, cytoskeletal organization, and cell proliferation were down-regulated, whereas stress-related proteins were up-regulated in cAS cells. These results support the hypothesis that BY-2 cells sense cAMP deficiency as a stress condition. Finally, many proteasome subunits were differentially expressed in cAS cells compared with WT cells, indicating that cAMP signaling broadly affects protein degradation via the ubiquitin/proteasome pathway.


Assuntos
AMP Cíclico/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Estresse Fisiológico/fisiologia , Antioxidantes/metabolismo , Linhagem Celular , AMP Cíclico/genética , Plantas Geneticamente Modificadas , Proteômica , Superóxido Dismutase/metabolismo , Fatores de Tempo , Transcriptoma
7.
Ann Bot ; 116(4): 487-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26034009

RESUMO

BACKGROUND: Climate change predictions indicate a progressive increase in average temperatures and an increase in the frequency of heatwaves, which will have a negative impact on crop productivity. Over the last decade, a number of studies have addressed the question of how model plants or specific crops modify their metabolism when exposed to heat stress. SCOPE: This review provides an overview of the redox pathways that contribute to how plants cope with heat stress. The focus is on the role of reactive oxygen species (ROS), redox metabolites and enzymes in the signalling pathways leading to the activation of defence responses. Additional attention is paid to the regulating mechanisms that lead to an increase in specific ROS-scavenging systems during heat stress, which have been studied in different model systems. Finally, increasing thermo-tolerance in model and crop plants by exposing them to heat acclimation or to exogenous treatments is discussed. CONCLUSIONS: Although there is clear evidence that several strategies are specifically activated according to the intensity and the duration of heat stress, as well as the capacity of the different species or genotypes to overcome stress, an alteration in redox homeostasis seems to be a common event. Different mechanisms that act to enhance redox systems enable crops to overcome heat stress more effectively. Knowledge of thermo-tolerance within agronomic biodiversity is thus of key importance to enable researchers to identify new strategies for overcoming the impacts of climate change, and for decision-makers in planning for an uncertain future with new choices and options open to them.


Assuntos
Mudança Climática , Homeostase , Temperatura Alta , Oxirredução , Plantas/metabolismo , Produtos Agrícolas/metabolismo , Estresse Fisiológico
8.
Front Plant Sci ; 6: 89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25750648

RESUMO

Wheat kernels contain fructans, fructose based oligosaccharides with prebiotic properties, in levels between 2 and 35 weight % depending on the developmental stage of the kernel. To improve knowledge on the metabolic pathways leading to fructan storage and degradation, carbohydrate fluxes occurring during durum wheat kernel development were analyzed. Kernels were collected at various developmental stages and quali-quantitative analysis of carbohydrates (mono- and di-saccharides, fructans, starch) was performed, alongside analysis of the activities and gene expression of the enzymes involved in their biosynthesis and hydrolysis. High resolution HPAEC-PAD of fructan contained in durum wheat kernels revealed that fructan content is higher at the beginning of kernel development, when fructans with higher DP, such as bifurcose and 1,1-nystose, were mainly found. The changes in fructan pool observed during kernel maturation might be part of the signaling pathways influencing carbohydrate metabolism and storage in wheat kernels during development. During the first developmental stages fructan accumulation may contribute to make kernels more effective Suc sinks and to participate in osmotic regulation while the observed decrease in their content may mark the transition to later developmental stages, transition that is also orchestrated by changes in redox balance.

9.
Protoplasma ; 252(6): 1451-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25712591

RESUMO

The alteration of growth patterns, through the adjustment of cell division and expansion, is a characteristic response of plants to environmental stress. In order to study this response in more depth, the effect of heat stress on growth was investigated in tobacco BY-2 cells. The results indicate that heat stress inhibited cell division, by slowing cell cycle progression. Cells were stopped in the pre-mitotic phases, as shown by the increased expression of CycD3-1 and by the decrease in the NtCycA13, NtCyc29 and CDKB1-1 transcripts. The decrease in cell length and the reduced expression of Nt-EXPA5 indicated that cell expansion was also inhibited. Since DNA methylation plays a key role in controlling gene expression, the possibility that the altered expression of genes involved in the control of cell growth, observed during heat stress, could be due to changes in the methylation state of their promoters was investigated. The results show that the altered expression of CycD3-1 and Nt-EXPA5 was consistent with changes in the methylation state of the upstream region of these genes. These results suggest that DNA methylation, controlling the expression of genes involved in plant development, contributes to growth alteration occurring in response to environmental changes.


Assuntos
Proliferação de Células/genética , Metilação de DNA , DNA de Plantas/genética , Resposta ao Choque Térmico , Temperatura Alta , /genética , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Tempo , /metabolismo , Transcrição Gênica
10.
Physiol Plant ; 153(1): 68-78, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24796393

RESUMO

Heat stress can have deleterious effects on plant growth by impairing several physiological processes. Plants have several defense mechanisms that enable them to cope with high temperatures. The synthesis and accumulation of heat shock proteins (HSPs), as well as the maintenance of an opportune redox balance play key roles in conferring thermotolerance to plants. In this study changes in redox parameters, the activity and/or expression of reactive oxygen species (ROS) scavenging enzymes and the expression of two HSPs were studied in tobacco Bright Yellow-2 (TBY-2) cells subjected to moderate short-term heat stress (SHS) and long-term heat stress (LHS). The results indicate that TBY-2 cells subjected to SHS suddenly and transiently enhance antioxidant systems, thus maintaining redox homeostasis and avoiding oxidative damage. The simultaneous increase in HSPs overcomes the SHS and maintains the metabolic functionality of cells. In contrast the exposure of cells to LHS significantly reduces cell growth and increases cell death. In the first phase of LHS, cells enhance antioxidant systems to prevent the formation of an oxidizing environment. Under prolonged heat stress, the antioxidant systems, and particularly the enzymatic ones, are inactivated. As a consequence, an increase in H2 O2 , lipid peroxidation and protein oxidation occurs. This establishment of oxidative stress could be responsible for the increased cell death. The rescue of cell growth and cell viability, observed when TBY-2 cells were pretreated with galactone-γ-lactone, the last precursor of ascorbate, and glutathione before exposure to LHS, highlights the crucial role of antioxidants in the acquisition of basal thermotolerance.


Assuntos
Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Linhagem Celular , Sobrevivência Celular , Glutationa/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Oxirredução , Estresse Oxidativo , Peroxidases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Tempo , /genética
11.
Nat Prod Commun ; 9(9): 1315-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25918801

RESUMO

Artichoke by-products are rich in phenolic compounds although they represent a waste for the food industry. This paper examines the application of ultrasound-assisted extraction (UAE) for obtaining organic solvent-free extracts rich in nutraceuticals from artichoke scraps. Application of ultrasounds for 60 minutes on test samples, using water as a solvent, improved recovery of phenolic substances compared with untreated samples. Among the phenols detected by high performance liquid chromatography, 5-O-caffeoylquinic and 1,5-di-O-caffeoylquinic acids were identified. In vivo treatments of tobacco BY-2 cells with ultrasonic extracts consistently enhanced their antioxidant power, making the cells more resistant to heat stress. UAE applied to artichoke by-products, using water as a solvent, appears to be a powerful eco-friendly technique that can provide extracts rich in nutraceuticals and turn waste products into resources. The extracts could be advantageously utilized in the food industry to produce functional foods.


Assuntos
Antioxidantes/isolamento & purificação , Cynara scolymus/química , Fenóis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Resíduos/análise , Antioxidantes/análise , Antioxidantes/farmacologia , Fenóis/análise , Fenóis/farmacologia , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , /fisiologia , Ultrassom
12.
Plant Foods Hum Nutr ; 67(3): 191-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22777386

RESUMO

The plant polyphenol trans-resveratrol (3, 5, 4'-trihydroxystilbene) mainly found in grape, peanut and other few plants, displays a wide range of biological effects. Numerous in vitro studies have described various biological effects of resveratrol. In order to provide more information regarding absorption, metabolism, and bioavailability of resveratrol, various research approaches have been performed, including in vitro, ex vivo, and in vivo models. In recent years, the induction of resveratrol synthesis in plants which normally do not accumulate such polyphenol, has been successfully achieved by molecular engineering. In this context, the ectopic production of resveratrol has been reported to have positive effects both on plant resistance to biotic stress and the enhancement of the nutritional value of several widely consumed fruits and vegetables. The metabolic engineering of plants offers the opportunity to change the content of specific phytonutrients in plant - derived foods. This review focuses on the latest findings regarding on resveratrol bioproduction and its effects on the prevention of the major pathological conditions in man.


Assuntos
Dieta , Alimento Funcional , Engenharia Metabólica/métodos , Plantas Comestíveis/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estilbenos/metabolismo , Adaptação Fisiológica , Frutas , Humanos , Valor Nutritivo , Plantas Comestíveis/genética , Resveratrol , Verduras
13.
Mol Nutr Food Res ; 54(5): 726-30, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20166145

RESUMO

Tocopherols, collectively known as vitamin E, are lipophilic antioxidants, essential dietary components for mammals and exclusively synthesized by photosynthetic organisms. Of the four forms (alpha, beta, gamma and delta), alpha-tocopherol is the major vitamin E form present in green plant tissues, and has the highest vitamin E activity. Synthetic alpha-tocopherol, being a racemic mixture of eight different stereoisomers, always results less effective than the natural form (R,R,R) alpha-tocopherol. This raises interest in obtaining this molecule from natural sources, such as plant cell cultures. Plant cell and tissue cultures are able to produce and accumulate valuable metabolites that can be used as food additives, nutraceuticals and pharmaceuticals. Sunflower cell cultures, growing under heterotrophic conditions, were exploited to establish a suitable in vitro production system of natural alpha-tocopherol. Optimization of culture conditions, precursor feeding and elicitor application were used to improve the tocopherol yields of these cultures. Furthermore, these cell cultures were useful to investigate the relationship between alpha-tocopherol biosynthesis and photomixotrophic culture conditions, revealing the possibility to enhance tocopherol production by favouring sunflower cell photosynthetic properties. The modulation of alpha-tocopherol levels in plant cell cultures can provide useful hints for a regulatory impact on tocopherol metabolism.


Assuntos
Plantas/metabolismo , Tocoferóis/metabolismo , Vitamina E/biossíntese , Animais , Técnicas de Cultura de Células/métodos , Linhagem Celular , Sobrevivência Celular , Dieta , Frutas/química , Mamíferos/metabolismo , Fotossíntese , Células Vegetais , Verduras/química , Vitamina E/análise
14.
Plant Biotechnol J ; 7(5): 422-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19490505

RESUMO

Resveratrol, a plant phenolic compound, is found in grapes and red wine, but is not widely distributed in other common food sources. The pathway for resveratrol biosynthesis is well characterized. Metabolic engineering of this compound has been achieved in tomato plants (Lycopersicon esculentum Mill.) in order to improve their nutritional value. Tomato plants synthesizing resveratrol were obtained via the heterologous expression of a grape (Vitis vinifera L.) cDNA encoding for the enzyme stilbene synthase (StSy), under the control of the fruit-specific promoter TomLoxB. The resulting LoxS transgenic plants accumulated trans-resveratrol and trans-piceid, in particular in the skin of the mature fruits. Quantitative analyses carried out on LoxS fruits were compared with those of a tomato line constitutively expressing the stsy gene (35SS). The LoxS fruits contained levels of trans-resveratrol that were 20-fold lower than those previously reported for the 35SS line. The total antioxidant capability and ascorbate content in transformed fruits were also evaluated, and a significant increase in both was found in the LoxS and 35SS lines. These results could explain the higher capability of transgenic fruits to counteract the pro-inflammatory effects of phorbol ester in monocyte-macrophages via the inhibition of induced cyclo-oxygenase-2 enzyme.


Assuntos
Anti-Inflamatórios/química , Antioxidantes/química , Frutas/química , Solanum lycopersicum/química , Estilbenos/metabolismo , Aciltransferases/genética , Ácido Ascórbico/análise , Frutas/genética , Genes de Plantas , Humanos , Solanum lycopersicum/genética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Resveratrol , Células U937 , Vitis/genética
15.
Int J Food Microbiol ; 128(3): 473-83, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19028404

RESUMO

Strains of Lactobacillus plantarum, Weissella cibaria/confusa, Lactobacillus brevis, Pediococcus pentosaceous, Lactobacillus sp. and Enterococcus faecium/faecalis were identified from raw tomatoes by Biolog System, partial 16S rRNA gene sequence and subjected to typing by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) analysis. Ten autochthonous strains were singly used to ferment tomato juice (TJ) via a protocol which included fermentation at 25 degrees C for 17 h and further storage at 4 degrees C for 40 days. Unstarted TJ and TJ fermented with an allochthonous strain of L. plantarum were used as the controls. All autochthonous strains grew well in TJ reaching cell densities ca. 10,000 and 10 times higher than unstarted TJ and TJ fermented with the allochthonous strain. Viscosity of TJs fermented with autochthonous strains was generally the highest, especially when started with W. cibaria/confusa which synthesized exo-polysaccharides. Overall, unstarted TJ and TJ fermented with the allochthonous strain showed marked decreases of ascorbic acid (ASC), glutathione (GSH) and total antioxidant activity (TTA) during storage. On the contrary, several TJs fermented with autochthonous strains, especially with L. plantarum POM1 and POM 35, maintained elevated values of ASC, GSH and TAA. The variation of color indexes mirrored the above behavior. TJs fermented with the above two autochthonous strains were compared to controls based on volatile components through Purge and Trap or Solid Phase Microextraction Gas Chromatography-Mass Spectrometry (PT or SPME-GC/MS) analysis. As shown by Principal Component Analysis a large number of volatiles belonging to various chemical classes markedly differentiated TJs fermented with autochthonous strains with respect to controls.


Assuntos
Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Lactobacillaceae/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Contagem de Colônia Microbiana , Cor , Comportamento do Consumidor , Qualidade de Produtos para o Consumidor , Fermentação , Alimentos Orgânicos , Humanos , Lactobacillaceae/metabolismo , Análise de Componente Principal , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , Paladar , Temperatura , Fatores de Tempo , Volatilização
16.
Int J Food Microbiol ; 127(3): 220-8, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18710789

RESUMO

Strains of Leuconostoc mesenteroides, Lactobacillus plantarum, Weissella soli/Weissella koreensis, Enterococcus faecalis, Pediococcus pentosaceus and Lactobacillus fermentum were identified from raw carrots, French beans and marrows by partial 16S rRNA gene sequence. L. plantarum M1, Leuc. mesenteroides C1 and P. pentosaceus F4 were selected based on the rates of growth and acidification in vegetable juice media, and used as the autochthonous mixed starter for the fermentation of carrots, French beans or marrows. An allochthonous starter, consisting of the same species, was also used for fermentation. A two-step fermentation process (1 day at 25 degrees C and 7 days at 15 degrees C) in brine (1% w/v) followed by storage at room temperature in olive oil until 40 days was set up. Unstarted vegetables subjected to the same treatments were used as the controls. Cell numbers of lactic acid bacteria in the started vegetables were ca. 10,000 (autochthonous starter) and 1000 (allochthonous starter) times higher than unstarted samples throughout the process. When fermented with the autochthonous starter, carrots, French beans or marrows were characterized by the rapid decrease of pH (<4.5), marked consumption of fermentable carbohydrates, and inhibition of Enterobacteriaceae and yeasts. Fermentation with the allochthonous starter did not acidify and inhibit bacteria and yeasts so rapidly. After 40 days, carrots, French beans and marrows fermented with the autochthonous starter had significantly (P<0.05) higher total concentration of vitamin C (ascorbate+dehydroascorbate) with respect to those fermented with the allochthonous starter and, especially unstarted vegetables. The same was found for the indexes of color. Firmness of both started vegetables was higher than unstarted vegetables. Sensory analysis differentiated started vegetables. Carrots and French beans fermented with the autochthonous starter were, especially, appreciated for fragrance. Appearance was the sensory attribute that mainly distinguished marrows fermented with the autochthonous starter.


Assuntos
Daucus carota/microbiologia , Fabaceae/microbiologia , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Lactobacillaceae/crescimento & desenvolvimento , Ácido Ascórbico/análise , Contagem de Colônia Microbiana , Comportamento do Consumidor , Qualidade de Produtos para o Consumidor , Fermentação , Concentração de Íons de Hidrogênio , Lactobacillaceae/metabolismo , Azeite de Oliva , Óleos de Plantas , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Fatores de Tempo
17.
Plant Cell Physiol ; 49(3): 362-74, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18234716

RESUMO

Durum wheat plants (Triticum durum cv Creso) were grown in the presence of cadmium (0-40 microM) and analysed after 3 and 7 d for their growth, oxidative stress markers, phytochelatins, and enzymes and metabolites of the ascorbate (ASC)-glutathione (GSH) cycle. Cd exposure produced a dose-dependent inhibition of growth in both roots and leaves. Lipid peroxidation, protein oxidation and the decrease in the ascorbate redox state indicate the presence of oxidative stress in the roots, where H2O2 overproduction and phytochelatin synthesis also occurred. The activity of the ASC-GSH cycle enzymes significantly increased in roots. Consistently, a dose-dependent accumulation of Cd was evident in these organs. On the other hand, no oxidative stress symptoms or phytochelatin synthesis occurred in the leaves; where, at least during the time of our analysis, the levels of Cd remained irrelevant. In spite of this, enzymes of the ASC-GSH cycle significantly increased their activity in the leaves. When ASC biosynthesis was enhanced, by feeding plants with its last precursor, L-galactono-gamma-lactone (GL), Cd uptake was not affected. On the other hand, the oxidative stress induced in the roots by the heavy metal was alleviated. GL treatment also inhibited the Cd-dependent phytochelatin biosynthesis. These results suggest that different strategies can successfully cope with heavy metal toxicity. The changes that occurred in the ASC-GSH cycle enzymes of the leaves also suggest that the whole plant improved its antioxidant defense, even in those parts which had not yet been reached by Cd. This precocious increase in the enzymes of the ASC-GSH cycle further highlight the tight regulation and the relevance of this cycle in the defense against heavy metals.


Assuntos
Ácido Ascórbico/metabolismo , Cádmio/farmacologia , Glutationa/metabolismo , Triticum/efeitos dos fármacos , Triticum/metabolismo , Relação Dose-Resposta a Droga , Oxirredução , Fitoquelatinas/biossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Açúcares Ácidos/metabolismo , Triticum/crescimento & desenvolvimento
18.
Plant J ; 48(5): 784-95, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17092315

RESUMO

An increase in the production of reactive oxygen species (ROS) is a typical event occurring during different stress conditions and activating conflicting responses in plants. In order to investigate the relevance of different timing and amounts of ROS production, tobacco (Nicotiana tabacum) Bright Yellow-2 (TBY-2) cells were incubated with different amounts of glucose plus glucose oxidase, for generating H(2)O(2) during time, or directly with known amounts of H(2)O(2). Data presented here indicate that, in TBY-2 cells, a difference in H(2)O(2) level is a critical point for shifting metabolic responses towards strengthening of antioxidant defences, or their depletion with consequent cell death. Timing of ROS production is also critical because it can determine programmed cell death (PCD) or necrosis. Depending on the different kinds of activated cell death, ascorbate (ASC) and glutathione (GSH) pools are altered differently. Moreover, an H(2)O(2)-dependent activation of nitric oxide synthesis is triggered only in the conditions inducing PCD. Ascorbate peroxidase (APX) has been analysed under different conditions of H(2)O(2) generation. Under a threshold value of H(2)O(2) overproduction, a transient increase in APX occurs, whereas under conditions inducing cell necrosis, the activity of APX decreases in proportion to cell death without any evident alteration in APX gene expression. Under conditions triggering PCD, the suppression of APX involves both gene expression and alteration of the kinetic characteristics of the enzyme. The changes in ASC, GSH and APX are involved in the signalling pathway leading to PCD, probably contributing to guaranteeing the cellular redox conditions required for successful PCD.


Assuntos
Peróxido de Hidrogênio/farmacologia , Óxido Nítrico/metabolismo , Peroxidases/metabolismo , Ascorbato Peroxidases , Morte Celular/efeitos dos fármacos , Células Cultivadas , Citosol/enzimologia , Relação Dose-Resposta a Droga , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo , /metabolismo
19.
Plant Biotechnol J ; 3(1): 57-69, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17168899

RESUMO

Tomato (Lycopersicon esculentum Mill.) tissues were transformed with a grape (Vitis vinifera L.) stilbene synthase cDNA, transcriptionally regulated by the cauliflower mosaic virus (CaMV) 35S promoter. Transgenic plants accumulated new compounds, not present in either wild-type or vector-transformed plants. These were identified, by high-pressure liquid chromatography, as trans-resveratrol and trans-resveratrol-glucopyranoside. The amounts of trans-resveratrol and its piceid form were evaluated in the transgenic fruit. It was found that the content of the metabolite varied during fruit maturation to up to 53 microg/g fresh weight of total trans-resveratrol at the red stage of ripening. This metabolite accumulation was possibly dependent on a combination of sufficiently high levels of stilbene synthase and the availability of substrates. With the aim of verifing the metabolic impairment, the amounts of chlorogenic acid and naringenin in both transgenic and wild-type ripening fruit were compared and no dramatic variation in the synthesis profile of the two metabolites was noted. To our knowledge, no data are available on the assessment of the effects of the expression of the StSy gene on other antioxidant compounds present in tomato fruit. To establish whether the presence of a novel antioxidant molecule affected the redox regulation in transgenic tomato fruit cells, the effect of resveratrol accumulation on the naturally present antioxidant pool was analysed. We showed that, in transgenic fruit which accumulate trans-resveratrol, there is an increase in the levels of ascorbate and glutathione, the soluble antioxidants of primary metabolism, as well as in the total antioxidant activity. Conversely, the content of tocopherol and lycopene, which are membrane-located antioxidants, is not affected. Consistent with the increased antioxidant properties, the lipid peroxidation was lower in transformed than in wild-type fruit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...